Press Archive

Cancel
  • In the SoCUS project, the Fraunhofer R&D Center for Electromobility Bavaria is developing cost-effective sensor systems that can be integrated directly into the battery and can measure the state of charge more accurately than commercially available systems. The systems use ultrasound pulses to measure and evaluate the density of the negative anode which changes with the state of charge of the cell.

    more info
  • The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

    more info
  • Expert Meeting on European Potentials in Lithium

    Presseinformation / October 27, 2017

    Competitiveness in the Lithium Industry – the Central Colocation Center (Metz, France) of EIT RawMaterials organised a workshop, 11-12 October 2017 in Würzburg, Germany, together with Core Partner Fraunhofer Institute for Silicate Research ISC, that attracted roughly 100 participants from across the value chain; one half of them were non-EIT RawMaterials members. The panel of experts gave an opportunity to review the European potentials in Lithium in terms of mining, extraction and refinement, battery materials, and cell manufacturing.

    more info
  • Fraunhofer ISC expands Health Unit

    Press Release / October 10, 2017

    The Fraunhofer Institute for Silicate Research ISC significantly expands its research and development activities in Würzburg in the areas of health, medical products and cell-based regenerative therapies. The Translational Center "Regenerative Therapies for Oncology and Musculoskeletal Diseases", hitherto a branch of the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart, became part of the Fraunhofer ISC on 1 August 2017. The Center is headed by Professor Heike Walles and was established at the Würzburg University Hospital. Along with the change of parent institute came a change of name: The former abbreviation “TZKME“ will be “TLZ-RT“ instead (for Translational Center Regenerative Therapies). Through the integration of the Translational Center, the Fraunhofer ISC in Würzburg expands by 47 members of staff.

    more info
  • Using elastomer films to generate electricity

    Press release / October 04, 2017

    Water is still the most important source of renewable energy in Bavaria, Germany, accounting for some 33 percent of all renewable energy produced in the region, as showed by the Bavarian Energy Map. But conventional hydroelectric plants, especially micro hydro generators, are a subject of controversy due to their low output volumes and their interference with the ecosystem. Fraunhofer researchers are working on an environmentally friendly alternative: in the future, innovative elastomer materials are set to convert the mechanical energy produced by flowing water in small rivers directly into electrical energy.

    more info
  • The Cooperative Research Project FLEX-G started on June 1, 2017 under the federal construction technology initiative named ENERGIEWENDEBAUEN funded by the German Federal Ministry for Economic Affairs and Energy (BMWi, funding reference 03ET1470A). The main goal of the research project is to investigate technologies for the manufacturing of translucent and transparent membrane roof and façade elements with integrated optoelectronic components. The focus lies on a switchable total energy transmittance (often referred to as the solar factor or solar heat gain, and “g-value” in Europe) and on flexible solar cell integration to significantly contribute to both energy saving and power generation in buildings.

    more info
  • Cruising range is one of the greatest challenges for the rapid implementation of electromobility in Europe. Ten partners from industry and research organizations now join forces in the EU funded project ECO COM'BAT, coordinated by the Fraunhofer Project Group Materials Recycling and Resource Strategies, part of the Fraunhofer Institute for Silicate Research ISC, to develop the next generation of lithium-ion batteries – the high-voltage battery. Better performance is not the only goal for the new battery. Compared to conventional batteries the new type should be more powerful and with regard to the materials used even more sustainable. The main task here is the substitution of conventional, often expensive, rare or even critical materials.

    more info
  • As a true 3D lithography technology Two-Photon Polymerization (2PP) allows to fabricate arbitrarily shaped microstructures especially suited for innovative optical applications. Up to now the technology has not reached industrial scale due to its rather limited throughput level. Fraunhofer ISC pursues different strategies to accelerate the process. The Institute presents its R&D competencies and latest technologies for optical and microoptical applications at the German Pavilion on the Photonics West in San Francisco from 31 January to 2 February 2017.

    more info
  • Successful conclusion of BMBF funded research project »flex 25« enables novel fluoropolymer film applications on buildings and façades. / 2016

    Flexible protection for »smart« building and façade components

    Press release / November 30, 2016

    The trend in architecture and facility management is towards »smart« buildings which, by means of integrated flexible electronics, automatically react on changing ambient conditions. These buildings are energy efficient and may have a number of comfortable features like solar cell modules integrated into façades or electrochromic windows, which change tint from clear to dark in strong sunshine. The implementation of novel usage concepts, however, still faces several challenges, mostly concerning the required service life of electronic components and their direct integration into building envelopes, especially when these are of lightweight construction or comprise flexible membrane roofing systems or façades.

    more info